Emerging integrated laser technologies in the visible and short near-infrared regimes

0
  • Winzer, P. J., Neilson, D. T. & Chraplyvy, A. R. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt. Express 26, 24190–24239 (2018).

    Article 

    Google Scholar 

  • Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nat. Photon. 4, 511–517 (2010).

    Article 
    ADS 

    Google Scholar 

  • Li, N. et al. Integrated lasers on silicon at communication wavelength: a progress review. Adv. Opt. Mater. 10, 2201008 (2022).

    Article 

    Google Scholar 

  • Zhou, Z. et al. Prospects and applications of on-chip lasers. eLight 3, 1 (2023).

    Article 

    Google Scholar 

  • Blumenthal, D. J. Photonic integration for UV to IR applications. APL Photon. 5, 020903 (2020).

    Article 
    ADS 

    Google Scholar 

  • Wu, T.-C., Chi, Y.-C., Wang, H.-Y., Tsai, C.-T. & Lin, G.-R. Blue laser diode enables underwater communication at 12.4 Gbps. Sci. Rep. 7, 40480 (2017).

    Article 
    ADS 

    Google Scholar 

  • Borisov, S. M. & Wolfbeis, O. S. Optical biosensors. Chem. Rev. 108, 423–461 (2008).

    Article 

    Google Scholar 

  • Soler, M., Calvo-Lozano, O., Estevez, M.-C. & Lechuga, L. M. Nanophotonic biosensors: driving personalized medicine. Opt. Photon. News 31, 24–31 (2020).

    Article 

    Google Scholar 

  • Buckley, E. Laser wavelength choices for pico-projector applications. J. Disp. Technol. 7, 402–406 (2011).

    Article 
    ADS 

    Google Scholar 

  • Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article 
    ADS 

    Google Scholar 

  • Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    Article 
    ADS 

    Google Scholar 

  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article 
    ADS 

    Google Scholar 

  • Bradac, C., Gao, W., Forneris, J., Trusheim, M. E. & Aharonovich, I. Quantum nanophotonics with group IV defects in diamond. Nat. Commun. 10, 5625 (2019).

    Article 
    ADS 

    Google Scholar 

  • Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).

    Article 
    ADS 

    Google Scholar 

  • Heindel, T., Kim, J.-H., Gregersen, N., Rastelli, A. & Reitzenstein, S. Quantum dots for photonic quantum information technology. Adv. Opt. Photon. 15, 613 (2023).

    Article 

    Google Scholar 

  • Cholsuk, C., Suwanna, S. & Vogl, T. Tailoring the emission wavelength of color centers in hexagonal boron nitride for quantum applications. Nanomaterials 12, 2427 (2022).

    Article 

    Google Scholar 

  • Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).

    Article 
    ADS 

    Google Scholar 

  • Holloway, C. L. et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements. IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Moustakas, T. D. & Paiella, R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep. Prog. Phys. 80, 106501 (2017).

    Article 
    ADS 

    Google Scholar 

  • Moulton, P. F. Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 3, 125–133 (1986).

    Article 
    ADS 

    Google Scholar 

  • Pavlopoulos, T. Scaling of dye lasers with improved laser dyes. Prog. Quantum Electron. 26, 193–224 (2002).

    Article 
    ADS 

    Google Scholar 

  • Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).

    Article 
    ADS 

    Google Scholar 

  • Wang, Y., Holguín-Lerma, J. A., Vezzoli, M., Guo, Y. & Tang, H. X. Photonic-circuit-integrated titanium:sapphire laser. Nat. Photon. 17, 338–345 (2023).

    Article 
    ADS 

    Google Scholar 

  • Nagarajan, R. et al. InP photonic integrated circuits. IEEE J. Sel. Topics Quantum Electron. 16, 1113–1125 (2010).

    Article 
    ADS 

    Google Scholar 

  • Kaur, P. et al. Hybrid and heterogeneous photonic integration. APL Photon. 6, 061102 (2021).

    Article 
    ADS 

    Google Scholar 

  • Boller, K.-J. et al. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics 7, 4 (2019).

    Article 

    Google Scholar 

  • Zhang, J. et al. III–V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photon. 4, 110803 (2019).

    Article 
    ADS 

    Google Scholar 

  • Carroll, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci. 6, 426 (2016).

    Article 

    Google Scholar 

  • Dietrich, P.-I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photon. 12, 241–247 (2018).

    Article 
    ADS 

    Google Scholar 

  • Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9, 408–411 (2022).

    Article 

    Google Scholar 

  • Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).

    Article 

    Google Scholar 

  • Liang, D. & Bowers, J. E. Recent progress in heterogeneous III–V-on-silicon photonic integration. Light Adv. Manufac. 2, 5 (2021).

    Article 

    Google Scholar 

  • Yang, C. et al. Advances in silicon-based, integrated tunable semiconductor lasers. Nanophotonics 12, 197–217 (2023).

    Article 

    Google Scholar 

  • Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019).

    Article 

    Google Scholar 

  • Li, Q. & Lau, K. M. Epitaxial growth of highly mismatched III–V materials on (001) silicon for electronics and optoelectronics. Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).

    Article 

    Google Scholar 

  • Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016).

    Article 
    ADS 

    Google Scholar 

  • Wei, W.-Q. et al. Monolithic integration of embedded III–V lasers on SOI. Light Sci. Appl. 12, 84 (2023).

    Article 
    ADS 

    Google Scholar 

  • Shang, C. et al. Electrically pumped quantum-dot lasers grown on 300 mm patterned Si photonic wafers. Light Sci. Appl. 11, 299 (2022).

    Article 
    ADS 

    Google Scholar 

  • Sun, Y. et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nat. Photon. 10, 595–599 (2016).

    Article 
    ADS 

    Google Scholar 

  • Vogelbacher, F. et al. Integrated silicon nitride organic hybrid DFB laser with inkjet printed gain medium. Opt. Express 27, 29350–29356 (2019).

    Article 
    ADS 

    Google Scholar 

  • Cegielski, P. J. et al. Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication. Opt. Express 25, 13199–13206 (2017).

    Article 
    ADS 

    Google Scholar 

  • Xie, W. et al. On-chip integrated quantum-dot-silicon-nitride microdisk lasers. Adv. Mater. 29, 1604866 (2017).

    Article 

    Google Scholar 

  • Kohler, D. et al. Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics. Light Sci. Appl. 10, 64 (2021).

    Article 
    ADS 

    Google Scholar 

  • Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

    Article 
    ADS 

    Google Scholar 

  • Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).

    Article 
    ADS 

    Google Scholar 

  • Ahn, N. et al. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 617, 79–85 (2023).

    Article 
    ADS 

    Google Scholar 

  • Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).

    Article 
    ADS 

    Google Scholar 

  • Blumenthal, D. J., Heideman, R., Geuzebroek, D., Leinse, A. & Roeloffzen, C. Silicon nitride in silicon photonics. Proc. IEEE 106, 2209–2231 (2018).

    Article 

    Google Scholar 

  • West, G. N. et al. Low-loss integrated photonics for the blue and ultraviolet regime. APL Photon. 4, 026101 (2019).

    Article 
    ADS 

    Google Scholar 

  • Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380 (2019).

    Article 
    ADS 

    Google Scholar 

  • Liu, X. et al. Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform. Optica 5, 1279–1282 (2018).

    Article 

    Google Scholar 

  • Wunderer, T. et al. Single-frequency violet and blue laser emission from AlGaInN photonic integrated circuit chips. Opt. Lett. 48, 2781–2784 (2023).

    Article 

    Google Scholar 

  • Spektor, G. et al. Universal visible emitters in nanoscale integrated photonics. Optica 10, 871–879 (2023).

    Article 

    Google Scholar 

  • Ji, X., Roberts, S., Corato-Zanarella, M. & Lipson, M. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photon. 6, 071101 (2021).

    Article 
    ADS 

    Google Scholar 

  • Morin, T. J. et al. CMOS-foundry-based blue and violet photonics. Optica 8, 755 (2021).

    Article 
    ADS 

    Google Scholar 

  • Chauhan, N. et al. Ultra-low loss visible light waveguides for integrated atomic, molecular, and quantum photonics. Opt. Express 30, 6960 (2022).

    Article 
    ADS 

    Google Scholar 

  • Chanana, A. et al. Ultra-low loss quantum photonic circuits integrated with single quantum emitters. Nat. Commun. 13, 7693 (2022).

    Article 
    ADS 

    Google Scholar 

  • Shah Hosseini, E., Yegnanarayanan, S., Atabaki, A. H., Soltani, M. & Adibi, A. High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range. Opt. Express 17, 14543 (2009).

    Article 
    ADS 

    Google Scholar 

  • Barclay, P. E., Srinivasan, K., Painter, O., Lev, B. & Mabuchi, H. Integration of fiber-coupled high-Q SiNx microdisks with atom chips. Appl. Phys. Lett. 89, 131108 (2006).

    Article 
    ADS 

    Google Scholar 

  • Smith, J. A., Francis, H., Navickaite, G. & Strain, M. J. SiN foundry platform for high performance visible light integrated photonics. Opt. Mater. Express 13, 458 (2023).

    Article 
    ADS 

    Google Scholar 

  • Stone, J. R., Lu, X., Moille, G. & Srinivasan, K. Efficient chip-based optical parametric oscillators from 590 to 1150 nm. APL Photon. 7, 121301 (2022).

    Article 
    ADS 

    Google Scholar 

  • Lu, X. et al. Milliwatt-threshold visible–telecom optical parametric oscillation using silicon nanophotonics. Optica 6, 1535–1541 (2019).

    Article 
    ADS 

    Google Scholar 

  • Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. On-chip optical parametric oscillation into the visible: generating red, orange, yellow, and green from a near-infrared pump. Optica 7, 1417–1425 (2020).

    Article 
    ADS 

    Google Scholar 

  • Domeneguetti, R. R. et al. Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths. Optica 8, 316–322 (2021).

    Article 
    ADS 

    Google Scholar 

  • Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    Article 
    ADS 

    Google Scholar 

  • Subramanian, A. Z. et al. Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line. IEEE Photon. J. 5, 2202809 (2013).

    Article 
    ADS 

    Google Scholar 

  • Day, M. L., Low, P. J., White, B., Islam, R. & Senko, C. Limits on atomic qubit control from laser noise. npj Quantum Inf. 8, 72 (2022).

    Article 
    ADS 

    Google Scholar 

  • Jiang, X., Scott, J., Friesen, M. & Saffman, M. Sensitivity of quantum gate fidelity to laser phase and intensity noise. Phys. Rev. A 107, 042611 (2023).

    Article 
    ADS 

    Google Scholar 

  • Ohtsu, M. & Kotajima, S. Linewidth reduction of a semiconductor laser by electrical feedback. IEEE J. Quantum Electron. 21, 1905–1912 (1985).

    Article 
    ADS 

    Google Scholar 

  • Yariv, A. Quantum Electronics (Wiley, 1989).

  • Tran, M. A., Huang, D. & Bowers, J. E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration. APL Photon. 4, 111101 (2019).

    Article 
    ADS 

    Google Scholar 

  • Zhang, Z. et al. Photonic integration platform for rubidium sensors and beyond. Optica 10, 752 (2023).

    Article 

    Google Scholar 

  • Franken, C. A. A. et al. Hybrid-integrated diode laser in the visible spectral range. Opt. Lett. 46, 4904 (2021).

    Article 
    ADS 

    Google Scholar 

  • Franken, C. A. A. et al. Hybrid integrated near UV lasers using the deep-UV Al2O3 platform. Preprint at (2023).

  • Wieman, C. E. & Hollberg, L. Using diode lasers for atomic physics. Rev. Sci. Instrum. 62, 1–20 (1991).

    Article 
    ADS 

    Google Scholar 

  • Kondratiev, N. M. et al. Recent advances in laser self-injection locking to high-Q microresonators. Front. Phys. 18, 21305 (2023).

    Article 
    ADS 

    Google Scholar 

  • Kondratiev, N. M. et al. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express 25, 28167 (2017).

    Article 
    ADS 

    Google Scholar 

  • Lu, X., Rogers, S., Jiang, W. C. & Lin, Q. Selective engineering of cavity resonance for frequency matching in optical parametric processes. Appl. Phys. Lett. 105, 151104 (2014).

    Article 
    ADS 

    Google Scholar 

  • Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023).

    Article 
    ADS 

    Google Scholar 

  • Siddharth, A. et al. Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photon. 7, 046108 (2022).

    Article 
    ADS 

    Google Scholar 

  • Isichenko, A., Chauhan, N., Liu, K., Harrington, M. W. & Blumenthal, D. J. Chip-scale, sub-Hz fundamental sub-kHz integral linewidth 780 nm laser through self-injection-locking a Fabry–Pérot laser to an ultra-high Q integrated resonator. Preprint at (2023).

  • Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

  • Eggleton, B. J., Poulton, C. G., Rakich, P. T., Steel, M. J. & Bahl, G. Brillouin integrated photonics. Nat. Photon. 13, 664–677 (2019).

    Article 
    ADS 

    Google Scholar 

  • Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).

    Article 
    ADS 

    Google Scholar 

  • Chauhan, N. et al. Visible light photonic integrated Brillouin laser. Nat. Commun. 12, 4685 (2021).

    Article 
    ADS 

    Google Scholar 

  • Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

    Article 
    ADS 

    Google Scholar 

  • Liu, K. et al. 36 Hz integral linewidth laser based on a photonic integrated 4.0 m coil resonator. Optica 9, 770–775 (2022).

    Article 
    ADS 

    Google Scholar 

  • Strekalov, D. V., Thompson, R. J., Baumgartel, L. M., Grudinin, I. S. & Yu, N. Temperature measurement and stabilization in a birefringent whispering gallery mode resonator. Opt. Express 19, 14495–14501 (2011).

    Article 
    ADS 

    Google Scholar 

  • Zhao, Q. et al. Integrated reference cavity with dual-mode optical thermometry for frequency correction. Optica 8, 1481 (2021).

    Article 
    ADS 

    Google Scholar 

  • Hummon, M. T. et al. Photonic chip for laser stabilization to an atomic vapor with 10−11 instability. Optica 5, 443 (2018).

  • Goyvaerts, J. et al. Enabling VCSEL-on-silicon nitride photonic integrated circuits with micro-transfer-printing. Optica 8, 1573 (2021).

  • Op De Beeck, C. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288 (2021).

  • Zhang, X. et al. Heterogeneous integration of III–V semiconductor lasers on thin-film lithium niobite platform by wafer bonding. Appl. Phys. Lett. 122, 081103 (2023).

    Article 
    ADS 

    Google Scholar 

  • Dorche, A. E., Nader, N., Stanton, E. J., Nam, S. W. & Mirin, R. P. Heterogeneously integrated near-infrared DFB laser on tantalum pentoxide. In Optical Fiber Communication Conference (OFC) Tu3C.6 (Optica Publishing Group, 2023).

  • Zhou, X. et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog. Quantum Electron. 71, 100263 (2020).

    Article 

    Google Scholar 

  • Li, P. et al. Demonstration of yellow (568 nm) stimulated emission from optically pumped InGaN/GaN multi-quantum wells. Appl. Phys. Lett. 121, 071103 (2022).

    Article 

    Google Scholar 

  • Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, 2007).

  • Renaud, D. et al. Sub-1 volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun. 14, 1496 (2023).

    Article 
    ADS 

    Google Scholar 

  • Sund, P. I. et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter. Sci. Adv. 9, eadg7268 (2023).

    Article 

    Google Scholar 

  • Shin, W., Sun, Y., Soltani, M. & Mi, Z. Demonstration of green and UV wavelength high Q aluminum nitride on sapphire microring resonators integrated with microheaters. Appl. Phys. Lett. 118, 211103 (2021).

    Article 
    ADS 

    Google Scholar 

  • He, C. et al. Ultra-high Q alumina optical microresonators in the UV and blue bands. Opt. Express 31, 33923–33929 (2023).

    Article 
    ADS 

    Google Scholar 

  • Liu, J. et al. Emerging material platforms for integrated microcavity photonics. Sci. China Phys. Mech. Astron. 65, 104201 (2022).

    Article 
    ADS 

    Google Scholar 

  • He, J. et al. Nonlinear nanophotonic devices in the ultraviolet to visible wavelength range. Nanophotonics 9, 3781–3804 (2020).

    Article 

    Google Scholar 

  • Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    Article 
    ADS 

    Google Scholar 

  • Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photon. 15, 131–136 (2021).

    Article 
    ADS 

    Google Scholar 

  • Nitiss, E., Hu, J., Stroganov, A. & Brès, C.-S. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photon. 16, 134–141 (2022).

    Article 
    ADS 

    Google Scholar 

  • Li, B. et al. High-coherence hybrid-integrated 780 nm source by self-injection-locked second-harmonic generation in a high-Q silicon-nitride resonator. Optica 10, 1241 (2023).

  • Clementi, M. et al. A chip-scale second-harmonic source via injection-locked all-optical poling. Light Sci. Appl. 12, 296 (2023).

    Article 
    ADS 

    Google Scholar 

  • Lu, X. et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat. Photon. 13, 593–601 (2019).

    Article 
    ADS 

    Google Scholar 

  • Wang, J.-Q. et al. Efficient frequency conversion in a degenerate χ(2) microresonator. Phys. Rev. Lett. 126, 133601 (2021).

    Article 
    ADS 

    Google Scholar 

  • Bruch, A. W. et al. 17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl. Phys. Lett. 113, 131102 (2018).

    Article 
    ADS 

    Google Scholar 

  • Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica 6, 1455 (2019).

  • Park, T. et al. High-efficiency second harmonic generation of blue light on thin-film lithium niobate. Opt. Lett. 47, 2706 (2022).

  • Sayem, A. A. et al. Efficient and tunable blue light generation using lithium niobate nonlinear photonics. Appl. Phys. Lett. 119, 231104 (2021).

    Article 
    ADS 

    Google Scholar 

  • Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ling, J. et al. Self-injection locked frequency conversion laser. Laser Photon. Rev. 17, 2200663 (2023).

  • Carmon, T. & Vahala, K. J. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat. Phys. 3, 430–435 (2007).

    Article 

    Google Scholar 

  • Levy, J. S., Foster, M. A., Gaeta, A. L. & Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 19, 11415–11421 (2011).

    Article 
    ADS 

    Google Scholar 

  • Surya, J. B., Guo, X., Zou, C.-L. & Tang, H. X. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica 5, 103 (2018).

  • Ling, J. et al. Third-harmonic generation on chip through cascaded χ(2) processes. In Conference on Lasers and Electro-Optics SF4G.3 (Optica Publishing Group, 2022).

  • Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    Article 
    ADS 

    Google Scholar 

  • Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article 
    ADS 

    Google Scholar 

  • Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).

    Article 
    ADS 

    Google Scholar 

  • Lin, Q., Johnson, T. J., Perahia, R., Michael, C. P. & Painter, O. J. A proposal for highly tunable optical parametric oscillation in silicon micro-resonators. Opt. Express 16, 10596–10610 (2008).

    Article 
    ADS 

    Google Scholar 

  • Sayson, N. L. B. et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nat. Photon. 13, 701–706 (2019).

    Article 
    ADS 

    Google Scholar 

  • Black, J. A. et al. Optical-parametric oscillation in photonic-crystal ring resonators. Optica 9, 1183–1189 (2022).

    Article 
    ADS 

    Google Scholar 

  • Drake, T. E., Stone, J. R., Briles, T. C. & Papp, S. B. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photon. 14, 480–485 (2020).

    Article 

    Google Scholar 

  • Perez, E. F. et al. High-performance Kerr microresonator optical parametric oscillator on a silicon chip. Nat. Commun. 14, 242 (2023).

    Article 
    ADS 

    Google Scholar 

  • Stone, J. R. et al. Wavelength-accurate nonlinear conversion through wavenumber selectivity in photonic crystal resonators. Nat. Photon. 18, 192–199 (2023).

    Article 
    ADS 

    Google Scholar 

  • Loh, W. et al. Operation of an optical atomic clock with a Brillouin laser subsystem. Nature 588, 244–249 (2020).

    Article 
    ADS 

    Google Scholar 

  • Savchenkov, A. A. et al. Application of a self-injection locked cyan laser for barium ion cooling and spectroscopy. Sci. Rep. 10, 16494 (2020).

    Article 

    Google Scholar 

  • Long, D. A., Stone, J. R., Sun, Y., Westly, D. & Srinivasan, K. Sub-Doppler spectroscopy of quantum systems through nanophotonic spectral translation of electro-optic light. Nat. Photon. (2023).

  • Dong, M. et al. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photon. 16, 59–65 (2022).

    Article 
    ADS 

    Google Scholar 

  • Valdez, F., Mere, V. & Mookherjea, S. 100 GHz bandwidth, 1 volt integrated electro-optic Mach–Zehnder modulator at near-IR wavelengths. Optica 10, 578 (2023).

  • Sohn, D. B., Örsel, O. E. & Bahl, G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting. Nat. Photon. 15, 822–827 (2021).

    Article 
    ADS 

    Google Scholar 

  • Ropp, C. et al. Integrating planar photonics for multi-beam generation and atomic clock packaging on chip. Light Sci. Appl. 12, 83 (2023).

    Article 
    ADS 

    Google Scholar 

  • Isichenko, A. et al. Photonic integrated beam delivery for a rubidium 3D magneto-optical trap. Nat. Commun. 14, 3080 (2023).

    Article 
    ADS 

    Google Scholar 

  • Mehta, K. K. et al. Integrated optical multiion quantum logic. Nature 586, 533–537 (2020).

    Article 
    ADS 

    Google Scholar 

  • Ferdinand, A. R. et al. Towards a strontium optical clock system with metasurface optics and integrated non- linear photonics. In Conference on Lasers and Electro-Optics 2023 SM2K.2 (Optica Publishing Group, 2023).

  • Lin, Y. et al. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform. Nat. Commun. 13, 6362 (2022).

    Article 
    ADS 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *