Emerging integrated laser technologies in the visible and short near-infrared regimes
Winzer, P. J., Neilson, D. T. & Chraplyvy, A. R. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt. Express 26, 24190–24239 (2018).
Google Scholar
Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nat. Photon. 4, 511–517 (2010).
Google Scholar
Li, N. et al. Integrated lasers on silicon at communication wavelength: a progress review. Adv. Opt. Mater. 10, 2201008 (2022).
Google Scholar
Zhou, Z. et al. Prospects and applications of on-chip lasers. eLight 3, 1 (2023).
Google Scholar
Blumenthal, D. J. Photonic integration for UV to IR applications. APL Photon. 5, 020903 (2020).
Google Scholar
Wu, T.-C., Chi, Y.-C., Wang, H.-Y., Tsai, C.-T. & Lin, G.-R. Blue laser diode enables underwater communication at 12.4 Gbps. Sci. Rep. 7, 40480 (2017).
Google Scholar
Borisov, S. M. & Wolfbeis, O. S. Optical biosensors. Chem. Rev. 108, 423–461 (2008).
Google Scholar
Soler, M., Calvo-Lozano, O., Estevez, M.-C. & Lechuga, L. M. Nanophotonic biosensors: driving personalized medicine. Opt. Photon. News 31, 24–31 (2020).
Google Scholar
Buckley, E. Laser wavelength choices for pico-projector applications. J. Disp. Technol. 7, 402–406 (2011).
Google Scholar
Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).
Google Scholar
Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).
Google Scholar
Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).
Google Scholar
Bradac, C., Gao, W., Forneris, J., Trusheim, M. E. & Aharonovich, I. Quantum nanophotonics with group IV defects in diamond. Nat. Commun. 10, 5625 (2019).
Google Scholar
Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).
Google Scholar
Heindel, T., Kim, J.-H., Gregersen, N., Rastelli, A. & Reitzenstein, S. Quantum dots for photonic quantum information technology. Adv. Opt. Photon. 15, 613 (2023).
Google Scholar
Cholsuk, C., Suwanna, S. & Vogl, T. Tailoring the emission wavelength of color centers in hexagonal boron nitride for quantum applications. Nanomaterials 12, 2427 (2022).
Google Scholar
Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).
Google Scholar
Holloway, C. L. et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements. IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).
Google Scholar
Moustakas, T. D. & Paiella, R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep. Prog. Phys. 80, 106501 (2017).
Google Scholar
Moulton, P. F. Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 3, 125–133 (1986).
Google Scholar
Pavlopoulos, T. Scaling of dye lasers with improved laser dyes. Prog. Quantum Electron. 26, 193–224 (2002).
Google Scholar
Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).
Google Scholar
Wang, Y., Holguín-Lerma, J. A., Vezzoli, M., Guo, Y. & Tang, H. X. Photonic-circuit-integrated titanium:sapphire laser. Nat. Photon. 17, 338–345 (2023).
Google Scholar
Nagarajan, R. et al. InP photonic integrated circuits. IEEE J. Sel. Topics Quantum Electron. 16, 1113–1125 (2010).
Google Scholar
Kaur, P. et al. Hybrid and heterogeneous photonic integration. APL Photon. 6, 061102 (2021).
Google Scholar
Boller, K.-J. et al. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics 7, 4 (2019).
Google Scholar
Zhang, J. et al. III–V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photon. 4, 110803 (2019).
Google Scholar
Carroll, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci. 6, 426 (2016).
Google Scholar
Dietrich, P.-I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photon. 12, 241–247 (2018).
Google Scholar
Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9, 408–411 (2022).
Google Scholar
Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).
Google Scholar
Liang, D. & Bowers, J. E. Recent progress in heterogeneous III–V-on-silicon photonic integration. Light Adv. Manufac. 2, 5 (2021).
Google Scholar
Yang, C. et al. Advances in silicon-based, integrated tunable semiconductor lasers. Nanophotonics 12, 197–217 (2023).
Google Scholar
Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019).
Google Scholar
Li, Q. & Lau, K. M. Epitaxial growth of highly mismatched III–V materials on (001) silicon for electronics and optoelectronics. Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
Google Scholar
Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016).
Google Scholar
Wei, W.-Q. et al. Monolithic integration of embedded III–V lasers on SOI. Light Sci. Appl. 12, 84 (2023).
Google Scholar
Shang, C. et al. Electrically pumped quantum-dot lasers grown on 300 mm patterned Si photonic wafers. Light Sci. Appl. 11, 299 (2022).
Google Scholar
Sun, Y. et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nat. Photon. 10, 595–599 (2016).
Google Scholar
Vogelbacher, F. et al. Integrated silicon nitride organic hybrid DFB laser with inkjet printed gain medium. Opt. Express 27, 29350–29356 (2019).
Google Scholar
Cegielski, P. J. et al. Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication. Opt. Express 25, 13199–13206 (2017).
Google Scholar
Xie, W. et al. On-chip integrated quantum-dot-silicon-nitride microdisk lasers. Adv. Mater. 29, 1604866 (2017).
Google Scholar
Kohler, D. et al. Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics. Light Sci. Appl. 10, 64 (2021).
Google Scholar
Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).
Google Scholar
Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).
Google Scholar
Ahn, N. et al. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 617, 79–85 (2023).
Google Scholar
Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).
Google Scholar
Blumenthal, D. J., Heideman, R., Geuzebroek, D., Leinse, A. & Roeloffzen, C. Silicon nitride in silicon photonics. Proc. IEEE 106, 2209–2231 (2018).
Google Scholar
West, G. N. et al. Low-loss integrated photonics for the blue and ultraviolet regime. APL Photon. 4, 026101 (2019).
Google Scholar
Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380 (2019).
Google Scholar
Liu, X. et al. Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform. Optica 5, 1279–1282 (2018).
Google Scholar
Wunderer, T. et al. Single-frequency violet and blue laser emission from AlGaInN photonic integrated circuit chips. Opt. Lett. 48, 2781–2784 (2023).
Google Scholar
Spektor, G. et al. Universal visible emitters in nanoscale integrated photonics. Optica 10, 871–879 (2023).
Google Scholar
Ji, X., Roberts, S., Corato-Zanarella, M. & Lipson, M. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photon. 6, 071101 (2021).
Google Scholar
Morin, T. J. et al. CMOS-foundry-based blue and violet photonics. Optica 8, 755 (2021).
Google Scholar
Chauhan, N. et al. Ultra-low loss visible light waveguides for integrated atomic, molecular, and quantum photonics. Opt. Express 30, 6960 (2022).
Google Scholar
Chanana, A. et al. Ultra-low loss quantum photonic circuits integrated with single quantum emitters. Nat. Commun. 13, 7693 (2022).
Google Scholar
Shah Hosseini, E., Yegnanarayanan, S., Atabaki, A. H., Soltani, M. & Adibi, A. High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range. Opt. Express 17, 14543 (2009).
Google Scholar
Barclay, P. E., Srinivasan, K., Painter, O., Lev, B. & Mabuchi, H. Integration of fiber-coupled high-Q SiNx microdisks with atom chips. Appl. Phys. Lett. 89, 131108 (2006).
Google Scholar
Smith, J. A., Francis, H., Navickaite, G. & Strain, M. J. SiN foundry platform for high performance visible light integrated photonics. Opt. Mater. Express 13, 458 (2023).
Google Scholar
Stone, J. R., Lu, X., Moille, G. & Srinivasan, K. Efficient chip-based optical parametric oscillators from 590 to 1150 nm. APL Photon. 7, 121301 (2022).
Google Scholar
Lu, X. et al. Milliwatt-threshold visible–telecom optical parametric oscillation using silicon nanophotonics. Optica 6, 1535–1541 (2019).
Google Scholar
Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. On-chip optical parametric oscillation into the visible: generating red, orange, yellow, and green from a near-infrared pump. Optica 7, 1417–1425 (2020).
Google Scholar
Domeneguetti, R. R. et al. Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths. Optica 8, 316–322 (2021).
Google Scholar
Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).
Google Scholar
Subramanian, A. Z. et al. Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line. IEEE Photon. J. 5, 2202809 (2013).
Google Scholar
Day, M. L., Low, P. J., White, B., Islam, R. & Senko, C. Limits on atomic qubit control from laser noise. npj Quantum Inf. 8, 72 (2022).
Google Scholar
Jiang, X., Scott, J., Friesen, M. & Saffman, M. Sensitivity of quantum gate fidelity to laser phase and intensity noise. Phys. Rev. A 107, 042611 (2023).
Google Scholar
Ohtsu, M. & Kotajima, S. Linewidth reduction of a semiconductor laser by electrical feedback. IEEE J. Quantum Electron. 21, 1905–1912 (1985).
Google Scholar
Yariv, A. Quantum Electronics (Wiley, 1989).
Tran, M. A., Huang, D. & Bowers, J. E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration. APL Photon. 4, 111101 (2019).
Google Scholar
Zhang, Z. et al. Photonic integration platform for rubidium sensors and beyond. Optica 10, 752 (2023).
Google Scholar
Franken, C. A. A. et al. Hybrid-integrated diode laser in the visible spectral range. Opt. Lett. 46, 4904 (2021).
Google Scholar
Franken, C. A. A. et al. Hybrid integrated near UV lasers using the deep-UV Al2O3 platform. Preprint at (2023).
Wieman, C. E. & Hollberg, L. Using diode lasers for atomic physics. Rev. Sci. Instrum. 62, 1–20 (1991).
Google Scholar
Kondratiev, N. M. et al. Recent advances in laser self-injection locking to high-Q microresonators. Front. Phys. 18, 21305 (2023).
Google Scholar
Kondratiev, N. M. et al. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express 25, 28167 (2017).
Google Scholar
Lu, X., Rogers, S., Jiang, W. C. & Lin, Q. Selective engineering of cavity resonance for frequency matching in optical parametric processes. Appl. Phys. Lett. 105, 151104 (2014).
Google Scholar
Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023).
Google Scholar
Siddharth, A. et al. Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photon. 7, 046108 (2022).
Google Scholar
Isichenko, A., Chauhan, N., Liu, K., Harrington, M. W. & Blumenthal, D. J. Chip-scale, sub-Hz fundamental sub-kHz integral linewidth 780 nm laser through self-injection-locking a Fabry–Pérot laser to an ultra-high Q integrated resonator. Preprint at (2023).
Boyd, R. W. Nonlinear Optics (Academic Press, 2008).
Eggleton, B. J., Poulton, C. G., Rakich, P. T., Steel, M. J. & Bahl, G. Brillouin integrated photonics. Nat. Photon. 13, 664–677 (2019).
Google Scholar
Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).
Google Scholar
Chauhan, N. et al. Visible light photonic integrated Brillouin laser. Nat. Commun. 12, 4685 (2021).
Google Scholar
Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).
Google Scholar
Liu, K. et al. 36 Hz integral linewidth laser based on a photonic integrated 4.0 m coil resonator. Optica 9, 770–775 (2022).
Google Scholar
Strekalov, D. V., Thompson, R. J., Baumgartel, L. M., Grudinin, I. S. & Yu, N. Temperature measurement and stabilization in a birefringent whispering gallery mode resonator. Opt. Express 19, 14495–14501 (2011).
Google Scholar
Zhao, Q. et al. Integrated reference cavity with dual-mode optical thermometry for frequency correction. Optica 8, 1481 (2021).
Google Scholar
Hummon, M. T. et al. Photonic chip for laser stabilization to an atomic vapor with 10−11 instability. Optica 5, 443 (2018).
Goyvaerts, J. et al. Enabling VCSEL-on-silicon nitride photonic integrated circuits with micro-transfer-printing. Optica 8, 1573 (2021).
Op De Beeck, C. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288 (2021).
Zhang, X. et al. Heterogeneous integration of III–V semiconductor lasers on thin-film lithium niobite platform by wafer bonding. Appl. Phys. Lett. 122, 081103 (2023).
Google Scholar
Dorche, A. E., Nader, N., Stanton, E. J., Nam, S. W. & Mirin, R. P. Heterogeneously integrated near-infrared DFB laser on tantalum pentoxide. In Optical Fiber Communication Conference (OFC) Tu3C.6 (Optica Publishing Group, 2023).
Zhou, X. et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog. Quantum Electron. 71, 100263 (2020).
Google Scholar
Li, P. et al. Demonstration of yellow (568 nm) stimulated emission from optically pumped InGaN/GaN multi-quantum wells. Appl. Phys. Lett. 121, 071103 (2022).
Google Scholar
Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, 2007).
Renaud, D. et al. Sub-1 volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun. 14, 1496 (2023).
Google Scholar
Sund, P. I. et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter. Sci. Adv. 9, eadg7268 (2023).
Google Scholar
Shin, W., Sun, Y., Soltani, M. & Mi, Z. Demonstration of green and UV wavelength high Q aluminum nitride on sapphire microring resonators integrated with microheaters. Appl. Phys. Lett. 118, 211103 (2021).
Google Scholar
He, C. et al. Ultra-high Q alumina optical microresonators in the UV and blue bands. Opt. Express 31, 33923–33929 (2023).
Google Scholar
Liu, J. et al. Emerging material platforms for integrated microcavity photonics. Sci. China Phys. Mech. Astron. 65, 104201 (2022).
Google Scholar
He, J. et al. Nonlinear nanophotonic devices in the ultraviolet to visible wavelength range. Nanophotonics 9, 3781–3804 (2020).
Google Scholar
Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).
Google Scholar
Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photon. 15, 131–136 (2021).
Google Scholar
Nitiss, E., Hu, J., Stroganov, A. & Brès, C.-S. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photon. 16, 134–141 (2022).
Google Scholar
Li, B. et al. High-coherence hybrid-integrated 780 nm source by self-injection-locked second-harmonic generation in a high-Q silicon-nitride resonator. Optica 10, 1241 (2023).
Clementi, M. et al. A chip-scale second-harmonic source via injection-locked all-optical poling. Light Sci. Appl. 12, 296 (2023).
Google Scholar
Lu, X. et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat. Photon. 13, 593–601 (2019).
Google Scholar
Wang, J.-Q. et al. Efficient frequency conversion in a degenerate χ(2) microresonator. Phys. Rev. Lett. 126, 133601 (2021).
Google Scholar
Bruch, A. W. et al. 17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl. Phys. Lett. 113, 131102 (2018).
Google Scholar
Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica 6, 1455 (2019).
Park, T. et al. High-efficiency second harmonic generation of blue light on thin-film lithium niobate. Opt. Lett. 47, 2706 (2022).
Sayem, A. A. et al. Efficient and tunable blue light generation using lithium niobate nonlinear photonics. Appl. Phys. Lett. 119, 231104 (2021).
Google Scholar
Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).
Google Scholar
Ling, J. et al. Self-injection locked frequency conversion laser. Laser Photon. Rev. 17, 2200663 (2023).
Carmon, T. & Vahala, K. J. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat. Phys. 3, 430–435 (2007).
Google Scholar
Levy, J. S., Foster, M. A., Gaeta, A. L. & Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 19, 11415–11421 (2011).
Google Scholar
Surya, J. B., Guo, X., Zou, C.-L. & Tang, H. X. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica 5, 103 (2018).
Ling, J. et al. Third-harmonic generation on chip through cascaded χ(2) processes. In Conference on Lasers and Electro-Optics SF4G.3 (Optica Publishing Group, 2022).
Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).
Google Scholar
Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).
Google Scholar
Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).
Google Scholar
Lin, Q., Johnson, T. J., Perahia, R., Michael, C. P. & Painter, O. J. A proposal for highly tunable optical parametric oscillation in silicon micro-resonators. Opt. Express 16, 10596–10610 (2008).
Google Scholar
Sayson, N. L. B. et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nat. Photon. 13, 701–706 (2019).
Google Scholar
Black, J. A. et al. Optical-parametric oscillation in photonic-crystal ring resonators. Optica 9, 1183–1189 (2022).
Google Scholar
Drake, T. E., Stone, J. R., Briles, T. C. & Papp, S. B. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photon. 14, 480–485 (2020).
Google Scholar
Perez, E. F. et al. High-performance Kerr microresonator optical parametric oscillator on a silicon chip. Nat. Commun. 14, 242 (2023).
Google Scholar
Stone, J. R. et al. Wavelength-accurate nonlinear conversion through wavenumber selectivity in photonic crystal resonators. Nat. Photon. 18, 192–199 (2023).
Google Scholar
Loh, W. et al. Operation of an optical atomic clock with a Brillouin laser subsystem. Nature 588, 244–249 (2020).
Google Scholar
Savchenkov, A. A. et al. Application of a self-injection locked cyan laser for barium ion cooling and spectroscopy. Sci. Rep. 10, 16494 (2020).
Google Scholar
Long, D. A., Stone, J. R., Sun, Y., Westly, D. & Srinivasan, K. Sub-Doppler spectroscopy of quantum systems through nanophotonic spectral translation of electro-optic light. Nat. Photon. (2023).
Dong, M. et al. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photon. 16, 59–65 (2022).
Google Scholar
Valdez, F., Mere, V. & Mookherjea, S. 100 GHz bandwidth, 1 volt integrated electro-optic Mach–Zehnder modulator at near-IR wavelengths. Optica 10, 578 (2023).
Sohn, D. B., Örsel, O. E. & Bahl, G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting. Nat. Photon. 15, 822–827 (2021).
Google Scholar
Ropp, C. et al. Integrating planar photonics for multi-beam generation and atomic clock packaging on chip. Light Sci. Appl. 12, 83 (2023).
Google Scholar
Isichenko, A. et al. Photonic integrated beam delivery for a rubidium 3D magneto-optical trap. Nat. Commun. 14, 3080 (2023).
Google Scholar
Mehta, K. K. et al. Integrated optical multiion quantum logic. Nature 586, 533–537 (2020).
Google Scholar
Ferdinand, A. R. et al. Towards a strontium optical clock system with metasurface optics and integrated non- linear photonics. In Conference on Lasers and Electro-Optics 2023 SM2K.2 (Optica Publishing Group, 2023).
Lin, Y. et al. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform. Nat. Commun. 13, 6362 (2022).
Google Scholar
link